Фоторезистор — устройство, принцип работы, характеристики


Условное обозначение фоторезистора

Фоторези́стор — полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом. Не имеет p-n перехода, поэтому обладает одинаковой проводимостью независимо от направления протекания тока.

Явление изменения электрического сопротивления полупроводника, обусловленное непосредственным действием излучения, называют фоторезистивным эффектом, или внутренним фотоэлектрическим эффектом.

Блок: 1/7 | Кол-во символов: 444
Источник: https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%82%D0%BE%D1%80%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80

Что такое фоторезистор?

Остановимся более подробно на описании полупроводникового фоторезистора. Для начала дадим ему определение.

Фоторезистор — это полупроводниковый прибор (датчик), который при облучении светом изменяет (уменьшает) свое внутреннее сопротивление.

В отличие от фотоэлементов других типов (фотодиодов и фототранзисторов) данный прибор не имеет p-n перехода. Это значит, что фоторезистор может проводить ток независимо от его направления и может работать не только в цепях постоянного тока, где присутствует постоянное напряжение, но и с переменными токами.

Блок: 2/10 | Кол-во символов: 587
Источник: https://www.asutpp.ru/fotorezistor.html

Что такое фоторезистор

Фоторезистор представляет из себя полупроводниковый радиоэлемент, который меняет свое сопротивление в зависимости от освещения. Для видимого света (солнечный свет или свет от осветительных ламп) используют сульфид или селенид кадмия. Есть также фоторезисторы, которые регистрируют инфракрасное излучение. Их делают  из германия с некоторыми примесями других веществ. Свойство менять свое сопротивление под воздействием света очень широко используется в электронике.

Блок: 2/5 | Кол-во символов: 494
Источник: https://www.RusElectronic.com/fotorezistor/

Устройство


Конструкция разных моделей фоторезисторов может отличаться по форме материалу корпуса. Но в основе каждого такого прибора лежит подложка, чаще всего керамическая, покрытая слоем полупроводникового материала. Поверх этого полупроводника наносятся змейкой тонкий слой золота, платины или другого коррозиестойкого металла. (см. рис. 1). Слои наносятся методом напыления.

Рис. 1. Устройство фоторезисторов

Напиленные слои соединяют с электродами, на которые поступает электрический ток. Всю эту конструкцию часто покрывают прозрачным пластиком и помещают в корпус с окошком для попадания световых лучей (см. рис. 2).

Рис. 2. Конструкция фоторезистора

Форма корпуса, его размеры и материал зависит от модели фоторезистора, определяемой технологией производителя. Примеры моделей показаны на рисунках 3 и 4.

Рис. 3. Датчик на основе фоторезистораРис. 4. Фотоприемник

Сегодня в продаже можно увидеть детали в металлическом корпусе, часто в пластике или модели открытого типа. Некоторые модели изготавливают без метода напыления, а вырезают тонкий резистивный слой непосредственно из полупроводника. Существуют также технологии изготовления пленочных фотодатчиков (см. рис. 5).

Рис. 5. Конструкция пленочного фоторезистора

Для напыления слоя полупроводника используют различные фоторезистивные материалы. Для фиксации видимого спектра света применяют селенид кадмия и сульфид кадмия.

Более широкий спектр материалов восприимчив к инфракрасному излучению:

  • германий чистый либо легированный примесями золота, меди, цинка;
  • кремний;
  • сульфид свинца и другие химические соединения на его основе;
  • антимонид или арсенид индия;
  • прочие химические соединения чувствительные к инфракрасным лучам.

Чистый германий или кремний применяют при изготовлении фоторезисторов с внутренним фотоэффектом, а вещества легированные примесями – для конструкций с внешним фотоэффектом. Независимо от вида применяемого фоторезистивного материала, оба типа фоторезисторов обладают одинаковыми свойствами – обратной, нелинейной зависимостью сопротивления от силы светового потока.

Блок: 3/10 | Кол-во символов: 2070
Источник: https://www.asutpp.ru/fotorezistor.html

Внешний вид и обозначение на схеме

В основном фоторезисторы выглядят вот так

На схемах могут обозначаться так

или так

Блок: 3/5 | Кол-во символов: 124
Источник: https://www.RusElectronic.com/fotorezistor/

Виды фоторезисторов и принцип работы

На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.

Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…


Мультиметр — RICHMETERS RM101

Richmeters RM101 — удобный цифровой мультиметр с автоматическим изменен…


Мультиметр — MASTECH MY68

Измерение: напряжения, тока, сопротивления, емкости, частоты…


Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка. Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами. Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.

Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.

Фоторезистор на схемах обозначается следующим образом:

Блок: 3/8 | Кол-во символов: 1644
Источник: http://www.joyta.ru/7603-fotorezistor-osnovnaya-informaciya/

Основные параметры отечественных фоторезисторов

Тип

ФР
Uраб,

В
Rт,

ом.
Iт,

мка
Iсв,

мка
dI=Iсв-Iт,

мка
Rт/Rсв

Удельная

чувств.,

мка/лм-в
Интегр.

чувств., а/лм
Мощность

рассеяния, Вт
1 2 3 4 5 6 7 8 9 10
ФСА-0 4-100 40*103-106 1,2 500 0,01
ФСА-1 4-100 40*103-106 1,2 500 0,01
ФСА-Г1 4-40 47*103-470*103 1,2 500 0,01
ФСА-Г2 4-40 40*103-106 1,2 500 0,01
ФСА-6 5-30 50-300*103 1,2 500 0,01
ФСК-0 50 5*106 10 2000 1990 200 7000 1,4 0,125
ФСК-1 50 5*106 10 2000 1990 200 7000 1,4 0,125
ФСК-2 100 10*106 10 800 790 80 1500 0,125
ФСК-4 50 5*106 10 2000 1990 200 7000 1,4 0,125
ФСК-5 50 5*106 10 1000 1990 100 6000 1,2 0,05
ФСК-6 50 3,3*106 15 2000 1885 9000 1,8 0,2
ФСК-7а 50 106 50 350 300 1500 0,35
ФСК-7б 50 105 50 800 750 6000 1,2 0,35
ФСК-Г7 50 5*106 10 2000 1990 200 3500 0,7 0,35
ФСК-Г1 50 5*106 10 1500 1490 150 6000 1,2 0,12
ФСК-Г2 50 5*106 10 4000 3990 400 12000 2,4 0,2
ФСК-П1 100 1010 0,01 1000-2000 1000-2000 4000 0,1
СФ2-1 15 30*106 0,5 1000 1000 2000 400000 0,01
СФ2-2 2(10) 4*106 0,5 1500 1500 3000 75000 0,05
СФ2-4 15 1,0 >750 0,01
СФ2-9 25 >3,3*106 240-900 0,125
СФ2-12 15 >15*106 200-1200 0,01
ФСД-0 20 20*108 1 2000 2000 2000 40000 0,05
ФСД-1 20 20*106 1 2000 2000 2000 40000 0,05
ФСД-Г1 20 20*106 1 2000 2000 2000 40000 0,05
СФ3-1 15 15*108 0.01 1500 1500 150000 600000 0,01
СФ3-8 25 <1 750 0,025

В таблице приведены средние значения, определенные (кроме Iт) при освещенности 200 лк.

 – сопротивление затемненного прибора;

 – сопротивление освещенного прибора;

 – ток через затемненный прибор;

 – максимально возможное рабочее напряжение 

Тип

спектр приема, нм

Rт., МОм

Iт. мкА

Uр., В

Rт/Rс

габариты

ФСК-1 300…900 3,3 15 50 100 28×5
ФСК-2 300…900 3,3 15 50 20 28х12,5×5
ФСД-1 300…900 3 10 20 150 18×5
ФР1-3 300…900 0,047…0,33 320 15 10,7×6
ФР-118 400…750 0,3…0,2 30 6 7,8 х 4,5
ФР-121 400…750 10 1 10 4,2 х 1,4
ФР-162А(Б) 750…1200 5 2 10 9.6×3.5
ФР-764 300…900 3.3 15 50 150 10,7×6
ФР-765 300…900 2 10 20 150 10,7×6
ФПФ7-1 300…900 1 6 6 50 7,8 х 3,2
СФ2-18 20…900 10 0.01 100 10.3×5,8
СФ2-19 20…900 0.25 0.08 20 10.3×5,8

При повышении температуры темновое сопротивление резисторов уменьшается.

Габаритные размеры даны для корпуса без учета длины выводов в виде диаметр х высота или высота х ширина х толщина.

Наибольшее распространение получили фоторезисторы, изготовленные из сернистого свинца, сернистого кадмия, селенистого кадмия. Название типа фоторезисторов слагается из букв и цифр, причем в старых обозначениях буквы А, К, Д обозначали тип использованного светочувствительного материала, в новом же обозначении эти буквы заменены цифрами. Буква, стоящая за дефисом, при старом обозначении, характеризовала конструктивное исполнение (Г-герметизированные, П-пленочные). В новой маркировке эти буквы также заменены цифрами. В таблице, ниже приведены наименования наиболее распространенных обозначений фоторезисторов.

Блок: 4/12 | Кол-во символов: 3025
Источник: http://www.MasterVintik.ru/osnovnye-harakteristiki-fotorezistorov/

Как работает фоторезистор

Давайте рассмотрим одного из представителя семейства фоторезисторов

На нем, как и во всех фотоэлементах, есть окошко, с помощью которого он “ловит” свет.

Сбоку можно прочитать его маркировку

Главным параметром фоторезистора является его темновое сопротивление. Темновое сопротивление фоторезистора — это его сопротивление при полном отсутствии падения света на него. Судя по справочнику, темновое сопротивление нашего подопечного 15х108 Ом или словами — 1,5 ГОм. Можно даже сказать — полнейший обрыв. Так ли это? Давайте глянем. Для этого я использую свою записную книжку и прячу там фоторезистор:

Даже в диапазоне 200 МОм мультиметр показал единичку. Это означает, что сопротивление фоторезистора далеко за 200 МОм.

Убираем нашего подопытного из книжки и включаем в комнате свет. Результат сразу же на лицо:

106,7 КОм.

Теперь включаю свою настольную лампу. В комнате стало еще светлее.  Смотрим на показания мультиметра:

76,2 КОм.

Подношу фоторезистор вплотную к настольной лампе:

18,6 КОм

Делаем вывод: чем больше поток света попадает на фоторезистор, тем меньше его сопротивление.

Блок: 4/5 | Кол-во символов: 1123
Источник: https://www.RusElectronic.com/fotorezistor/

Символ фоторезистора на схеме

Символ американского стандарта и символ международного фоторезистора показаны на рисунке ниже.

Блок: 4/6 | Кол-во символов: 123
Источник: https://meanders.ru/fotorezistor-opredelenie-i-vidy-kak-rabotajut-preimushhestva-i-nedostatki.shtml

Чувствительность фоторезистора

Фотрезисторы имеют более низкую чувствительность, чем фотодиоды и фототранзисторы. Фотодиоды и фототранзисторы — полупроводниковые устройства, в которых используется свет для управления потоком электронов и дырок через PN-переход, а фоторезисторы лишеные этого PN-перехода.

Если интенсивность светового потока находиться на стабильном уровне, то сопротивление по-прежнему может существенно изменяться вследствие изменения температуры, поскольку LDR также чувствительны и к изменениям температуры. Это качество фоторезистора делает его непригодным для точного измерения интенсивности света.

Блок: 5/8 | Кол-во символов: 621
Источник: http://www.joyta.ru/7603-fotorezistor-osnovnaya-informaciya/

ТИПОВЫЕ ОБОЗНАЧЕНИЯ ФОТОРЕЗИСТОРОВ

Вид фоторезисторов Старое обозначение Новое обозначение
Сернисто-свинцовые ФСА-0, ФСА-1, ФСА-6, ФСА-Г1, ФСА-Г2
Сернисто-кадмиевые ФСК-0, 1, 2, 4, 5, 6, 7, ФСК-Г1,

ФСК-Г2, ФС’Р;-Г7, ФСК-П1
СФ2-1, 2, 4, 9, 12
Селенисто-кадмиевые ФСД-0, ФСД-1, ФСД-Г1 СФ3-1, 8

 Чувствительность фоторезисторов меняется (уменьшается) в первые 50 часов работы, оставаясь в дальнейшем практически постоянной в течение всего срока службы, измеряемого несколькими тысячами часов. Интервал рабочих температур для сернисто-кадмиевых фоторезисторов составляет от -60 до +85°С для селенисто-кадмиевых — от -60 до +40°С и для сернисто-свинцовых — от -60 до +70°С.

Блок: 5/12 | Кол-во символов: 673
Источник: http://www.MasterVintik.ru/osnovnye-harakteristiki-fotorezistorov/

Виды


Несмотря на разнообразие фотодатчиков их можно разделить всего на два вида:

  1. Фоторезисторы с внутренним фотоэффектом;
  2. Датчики с внешним фотоэффектом.

Они отличаются лишь по технологии производства, а точнее, по составу фоторезистивного слоя. Первые – это фоторезисторы, в которых полупроводник изготавливается из чистых химических элементов, без примесей. Они малочувствительны к видимому свету, однако хорошо реагируют на тепловые лучи (инфракрасный свет).

Фоторезисторы с внешним эффектом содержат примеси, которыми легируют основной состав полупроводникового вещества. Спектр чувствительности у этих датчиков гораздо шире и перемещается в зону видимого спектра и даже в зону УФ излучения.

По принципу действия эти два вида фоторезисторов не отличаются. Их внутреннее сопротивление нелинейно уменьшается с ростом интенсивности светового потока в зоне чувствительности.

Блок: 6/10 | Кол-во символов: 888
Источник: https://www.asutpp.ru/fotorezistor.html

Инертность фоторезистора

Еще одно интересное свойство фоторезистора заключается в том, что существует инертность (время задержки) между изменениями в освещении и изменением сопротивления.

Для того чтобы сопротивление упало до минимума при полном освещении необходимо около 10 мс времени, и около 1 секунды для того, чтобы сопротивление фоторезистора возросло до максимума после его затемнения.

По этой причине LDR не может использоваться в устройствах, где необходимо учитывать резкие перепады освещения.

Блок: 6/8 | Кол-во символов: 505
Источник: http://www.joyta.ru/7603-fotorezistor-osnovnaya-informaciya/

Практическое применение фоторезистора

Схема автоматического регулятора освещенности:




Блок: 8/12 | Кол-во символов: 94
Источник: http://www.MasterVintik.ru/osnovnye-harakteristiki-fotorezistorov/

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Зарубежные аналоги микросхем
  • Блок: 9/12 | Кол-во символов: 78
    Источник: http://www.MasterVintik.ru/osnovnye-harakteristiki-fotorezistorov/

    Чем заменить микросхему?

    Часто возникает вопрос при ремонте радиоаппаратуры. Если не удается найти нужную микросхему, то можно заменить её аналогом по приведённой ниже таблице.

    Подробнее…

  • Цветовая маркировка светодиодных индикаторов
  • Блок: 10/12 | Кол-во символов: 260
    Источник: http://www.MasterVintik.ru/osnovnye-harakteristiki-fotorezistorov/

    Цветовая маркировка светодиодных индикаторов.

    Подробнее…

  • О беспроводном модеме для передачи данных в ISM диапазонах
  • Блок: 11/12 | Кол-во символов: 143
    Источник: http://www.MasterVintik.ru/osnovnye-harakteristiki-fotorezistorov/

    Беспроводной интеллектуальный модем для надежной передачи данных в ISM диапазонах (433 МГц, 868 МГц и 902 МГц)

    Сегодня технологии высокочастотных схем развиваются стремительными темпами, появляются новые беспроводные системы. Большинство из них (системы беспроводной телефонии, Bluetooth и WLAN 802.11b и т.п.) работают также как и СВЧ печи, в нелицензируемом диапазоне СВЧ 2,4 ГГц.

    Из-за насыщенного трафика в этом диапазоне и связанных с этим вопросов совместимости возрос интерес к диапазонам ISM (industrial, scientific, medical), расположенным на более низких частотах — 433 и 868 МГц в Европе, а так же от 902 до 928 МГц в США.

    Подробнее…


Блок: 12/12 | Кол-во символов: 668
Источник: http://www.MasterVintik.ru/osnovnye-harakteristiki-fotorezistorov/
Кол-во блоков: 30 | Общее кол-во символов: 14690
Количество использованных доноров: 6
Информация по каждому донору:

  1. https://www.asutpp.ru/fotorezistor.html: использовано 3 блоков из 10, кол-во символов 3545 (24%)
  2. http://www.joyta.ru/7603-fotorezistor-osnovnaya-informaciya/: использовано 3 блоков из 8, кол-во символов 2770 (19%)
  3. https://meanders.ru/fotorezistor-opredelenie-i-vidy-kak-rabotajut-preimushhestva-i-nedostatki.shtml: использовано 1 блоков из 6, кол-во символов 123 (1%)
  4. http://www.MasterVintik.ru/osnovnye-harakteristiki-fotorezistorov/: использовано 8 блоков из 12, кол-во символов 6067 (41%)
  5. https://www.RusElectronic.com/fotorezistor/: использовано 3 блоков из 5, кол-во символов 1741 (12%)
  6. https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%82%D0%BE%D1%80%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80: использовано 1 блоков из 7, кол-во символов 444 (3%)




Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий